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In their new Cell paper, Cantone et al. (2009) present exciting results on constructing and utilizing a small
synthetic gene regulatory network in yeast that draws from two rapidly developing fields of systems and
synthetic biology.
Chemistry & Biology 16, March 27, 200
synthetic biology (Elowitz and Leibler,

2000). Second, the network could be

controlled with an administrable small

molecule, galactose, because of the inclu-

sion of a mutually repressive interaction

between Gal80 and Gal4 proteins. Hence,

the IRMA network could be either acti-

vated or inactivated, depending on the

presence of galactose. Third, the IRMA

network was designed to be robust

against inputs from the cellular environ-

ment, except the regulation from the

carbon source (i.e., galactose or glucose),

while the network can affect other genes in

the cell. Carefully planned experiments

were carried out to rewire the connections

among the chosen genes and delete

the endogenous ones. This concept of

‘‘insulation’’ is a brilliant one and exem-

plifies the merit of employing synthetic

gene networks for assessing modeling

approaches (Stolovitzky et al., 2007). The

previous approach was to utilize natural

gene networks, which, even when exten-

sively studied, are often connected to

unknown (or neglected) cellular or environ-

mental components not captured in the

modeling framework and thus compro-

mise, in an unpredictable manner, the reli-

ability of the assessment results. However,

it is worth noting that these authors did not

experimentally validate the insulation of

the constructed network, and some of

the experimental complications they later

encountered (i.e., transient increase of

mRNA levels of two genes during switch-

ing of carbon sources) might be due to

unknown regulations of the network by

external factors (e.g., regulation of protein

degradation by environmental signals).

Using the IRMA network, Cantone and

colleagues (Cantone et al., 2009) then
could enable the rational design of new and

improved biological functions for synthetic

biology (Church, 2005). An alternative type

of synergy between the two fields is also

possible; namely, the utilization ofsynthetic

biology tools in improving systems biology

methods. In the forthcoming issue of Cell,

Cantone and colleagues (Cantone et al.,

2009) presented a pioneering work in this

new direction, which beautifully united sys-

tems and synthetic biology by constructing

a small synthetic gene regulatory network

in yeast and utilizing it for in vivo bench-

marking of several reverse engineering

and modeling approaches.

In the framework of the in vivo reverse-

engineering and modeling assessment

(IRMA, see Figure 1), Cantone and

colleagues (Cantone et al., 2009) started

with the design and construction of a

small synthetic gene regulatory network

in S. cerevisiae, a model eukaryotic

organism. They created a five-gene net-

work, termed the IRMA network, with well-

characterized, nonessential transcription

factors (Swi5, Gal80, Ash1, Cbf1, and

Gal4) and promoters. Comprehensive

knowledge on the chosen components

and their interactions were utilized to

obtain a network with several distinct

features. First, despite its small scale, the

IRMA network includes several represen-

tative interactions in natural gene regula-

tory networks, such as transcriptional

cascading, positive and negative feed-

back loops, as well as protein-protein

interactions. In fact, the proposed network

topology is potentially capable of gener-

ating oscillations, a popular theme both

in systems-level elucidation of natural

networks and in the investigation of artifi-

cial gene networks since the birth of
Systems biology and synthetic biology are

two emerging research fields that have

risen in recent years at the intersection of

conventional biology and other more

quantitative disciplines. The former advo-

cates a systems perspective for the eluci-

dation of complex biological networks,

from which critical global properties

emerge as a consequence of the syner-

gistic interactions among a large number

of components. It often features large-

scale ‘‘omics’’ datasets generated by

high-throughput technologies and sophis-

ticated mathematical modeling tools

drawn from other fields such as physics,

computer science, and engineering. One

representative example is the ultimate

objective of recovering large gene regula-

tory networks based on gene expression

data, which in the past decade has

attracted numerous talented researchers

for the development of intelligent ‘‘reverse-

engineering’’ network-inferring algorithms.

However, due to the inherent complexity of

biology and the lack of ‘‘golden stan-

dards,’’ it is usually difficult or even impos-

sible to evaluate the performance and/or

applicability of these diverse algorithms.

On the other hand, the field of synthetic

biology engages in the design and

construction of artificial biological net-

works to help understand how natural

systems function (e.g., build a synthetic

oscillatory gene network to help under-

stand how circadian rhythm is created) or

to develop technologies for biomedical,

environmental, or other applications.

Given the complementarity of these two

fields, one can expect that concepts/tools

from one field might be useful for the other.

For example, knowledge and modeling

formalisms from systems biology research
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Figure 1. Schematic Diagram of the Overall Framework of IRMA
Schematic diagram of the overall framework of the in vivo reverse-engineering and modeling assessment (IRMA) (Cantone et al., 2009). Starting from an artificial
network design involving 5 yeast transcription factors (center), the authors combined reverse engineering assessment, mathematical modeling, and in vivo
measurements into an itergrated process for synthetic network based benchmarking of modeling methods. This figure is adapted from Cantone et al., 2009.
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model could lead to a more accurate

representation of the network, although

at the expense of introducing additional

parameters, a recurring trade-off between

accuracy and knowledge/data require-

ment in modeling of complex biological

networks.

Finally, Cantone and colleagues (Can-

tone et al., 2009) also utilized all the avail-

able gene expression data of the IRMA

network to assess systematically three

types of reverse-engineering methods for

inferring gene regulatory networks. The

algorithms evaluated are representative

of the ODE-based framework (Gardner

et al., 2003), Bayesian network (Friedman

et al., 2000), and information theory (IT)-

based approaches (Basso et al., 2005).

Quantitative metrics, incorporating true

positives, false positives, and false nega-

tives, were calculated to evaluate the

algorithm performance. The results of

this benchmarking exercise yielded new

insights into the robustness and the
and translation as a single step, and even-

tually involved 5 variables and 33 param-

eters, which are related to promoter

response, degradation, and specific time

delay. The authors then estimated the

parameters from the switch-on time

series and additional promoter strength

experimental data, using a stochastic

optimization framework. Next, the ODE

model was validated by comparing model

predictions with experimental network

perturbation data. There was a semiquan-

titative agreement between the experi-

mental data and the model predictions,

and important dynamic behaviors were

reasonably captured by the model. Some

discrepancies between the model and the

in vivo data were noted, however. Besides

possible biological complications that

the authors commented on, other more

fundamental reasons might include the

incomplete ‘‘insulation’’ of the network

and/or the oversimplification of the

model. Including protein dynamics in the
performed two types of perturbation

experiments. In environmental perturba-

tions, they switched on or off the network

byculturing cells ingalactoseor inglucose,

respectively, and collected samples in a

time series. In genetic perturbations, they

overexpressed the five network genes

one-by-one by utilizing a strong constitu-

tive promoter and focused on samples at

the steady state. In both cases, mRNA

levels (i.e., the transcriptional response of

the network) were measured through

quantitative real-time PCR.

With a ‘‘true’’ gene network and a good

amount of experimental data (both time

series and steady state) in hand, Cantone

and colleagues (Cantone et al., 2009)

were well positioned to evaluate a range

of network modeling approaches. They

first developed a dynamic model of the

IRMA network based on the ordinary

differential equation (ODE) formalism.

The ODE model included only mRNA

concentrations, considering transcription
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strengths/weaknesses of different net-

work inference algorithms. The authors

concluded that the ODE approaches

performed the best with data sets that

captured strong responses (e.g., the

‘‘switch-on’’ dataset, which is rich in

dynamic behavior). The tested dynamic

Bayesian network algorithm tended to

perform better with larger data sets (e.g.,

the ‘‘switch-off’’ series), because larger

datasets facilitate the estimation of proba-

bility density distributions utilized in infer-

ring Bayesian networks. The IT-based

approach did not perform well for any of

the data sets; this algorithm was not

expected to work well on small networks.

It should be pointed out that comparison

of different network inference algorithms

must be done with prudence. Most

importantly, it remains to be determined

whether assessment results from small

gene networks, such as the IRMA network,

can be reliably extended to large-scale

networks with a much larger number of

components as well as more diverse and

complex interactions. In addition, other

factors such as computational require-

ments and data requirements must also

be considered.

Combining all the above modules, the

IRMA framework, a first-of-its-kind work,

represents a laudable contribution to the

development of a synthetic model gene

network for use in benchmarking network

inference and modeling algorithms. It

pushes the envelope of standardization

and benchmarking, a trend that is increas-

ingly gaining momentum in synthetic

biology (Canton et al., 2008). We envision

that more advanced approaches, inspired
by and extended from the IRMA frame-

work, will be developed in the coming

years to realize the full benefit of utilizing

synthetic gene networks for evaluating

and improving reverse-engineering and

other modeling approaches. We further

expect that two types of developments

could potentially move forward this new

line of research substantially. First, a rich

reservoir of gene components for engi-

neering synthetic networks exists; for

instance, the yeast genome was found to

contain 106 transcription factors that

form a larger range of interactions (e.g.,

auto-regulation and feedforward loops)

(Lee et al., 2002). Computational frame-

works could be developed to support

more systematic and comprehensive

design of larger and more complex

synthetic gene networks. Second, it will

be highly desirable to include proteins in

future IRMA-like frameworks. Intriguingly,

although protein concentrations were not

reported in their current work, Cantone

and colleagues (Cantone et al., 2009)

labeled all proteins in the IRMA network

with different markers, including a green

fluorescence tag which can be used to

monitor the network response directly at

the single-cell resolution. Therefore, the

full value of the constructed IRMA network

could be further explored by incorporating

protein levels. It has been well accepted

that the correlation between mRNA and

protein abundance is often quite weak in

yeast cells (Gygi et al., 1999) due to post-

transcriptional regulations (most impor-

tantly, translation and degradation). To

upgrade the performance of reverse-engi-

neering and other modeling approaches,
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protein dynamics must be included, both

in experimental measurements and in

modeling. The ultimate outcome we look

forward to seeing from this happy

marriage between systems and synthetic

biology is the advance of systems biology

approaches to the next level of quantita-

tiveness through the support of synthetic

biology tools, which in turn will enable

the rational design and realization of new

in vivo biological functions, a main goal

of synthetic biology.
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